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Abstract—The paper summanzes recent efforts 1n formulating an elastic-plastic-fracture model for the
finute-element analysis of concrete structures. Based on the geometrical considerations, a four-parameter
fracture (or yielding) criterion was proposed which embraces some of the simpler existing models Isotropic
elastic and anisotropic elastic behaviors were proposed for the initial loading and the post-failure behaviors
A plastic model displaying mixed hardening was proposed to describe material behaviors between the nttial
yielding and the fracture failure Incremental stress-strain relationships were derived based on the
associated flow rule and Ziegler's kinematic hardening rule Three different types of fatlure modes were
considered A simple crushing coefficient was defined based on a dual criterion to identify the crushing type, the
cracking type and the mixed type of failure Matenal parameters required for each clement of the plastic-fracture
model were determined. An important feature of the paper is that matrix formulations for all the constitutive
equations were derived and are available for finite-element implementations

NOTATION

A,B,C,D experimentaily determmed material constants
[b(#)),[b'(¢)] abbreviated functions defined in eqns (24) and (25)
¢,du parameters in eqn (11) and eqn (12)
au  clastic stiffness tensor
[C®],CT tangent stiffness matrix of plastic concrete
(] stiffness matrix of fractured concrete
E Young's modulus
F(647) loading function
f failure function
fififtefic ultimate strength of concrete under uniaxial compression, unaxial tension. biaxial equal compression
and triaxial compression with confinement pressure f,., respectively
fc mitial discontinuous strength of concrete under uniaxial compression
fie confinement pressure for triaxial compression
G shear modulus
H work hardening modulus )
H work hardening modulus associated with 1sotropic expansion
I, first stress invariant
{11 identity matrix
J, second deviatroic stress invariant
K bulk modulus
M parameter of isotropic hardenmg effects
S; maximum principal deviatoric stress
S; deviatonc stress tensor
[T,LIT,] coordinate transformation matrices for stress and strain components
W abbreviated function in eqn (18)
crushing coefficient
translation component for umaxial compressive stress condition
a, translation components of the center of yielding surface
B reduction factor
B, abbreviated functions in egn (18)
8; Kronecker deita
€ principal strams
¢’ equivalent plastic stram due to 1sotropic hardening
de, equivalent plastic strain increment
de;. deﬁ,dcﬁ',dcf? elastic stramn increment, plastic strain increment, 1sotropic hardenmg plastic strain increment, and
kinematic hardeming plastic stramn increment, respectively
dA positive scalar function in the normality condition
v Poisson’s ratio
(p, 1, 8) Haigh-Westgarrd coordmate system
o, principal stresses
¢ unaxial compressive siress
¢; maximum principal value of 4,
G S, reduced stress.and deviatoric stress components
oy, €, maximum principal stress and strain
da,.de, {do},{de} ncremental stress and strain tensors
{Ac},{Ae} mcremental stress and strain matrices for the post-fallure region
{0a). {04} released stress matrices due to cracking and crushing, respectively
7 1sotropic strain hardening rate function
¢ abbreviated functions in eqn (18)
& angle that descnbes the crack piane direction
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INTRODUCTION
With the rapid development of computer-aided design of structures, considerable research has
been focused on the modeling of progressive failures exhibited in the concrete structures
subjected to complex loading conditions. Different approaches for the mathematical modeling,
such as material-nonlinear elasticity[1-3], rate-independent and rate-dependent plasticity
theories [5-8] have been proposed in recent years A literature review including critiques of the
various modeling techniques was given by Chen and Ting[9].

Concrete behaviors are exceedingly complicated. A constitutive model which embraces
concrete characteristics for all types of loading and environmental conditions, and yet 1s
sufficiently simple for present design applications, seems beyond reach. However, a reasonably
complete constitutive model for short-time loadings should include some of the principal
features of cracking behaviors: (i) The brittle cracking in tension, (ii) the ductile failure in
compression, and (iii) the post-failure stress-redistribution due to local cracking. Focused on
these three primary phenomena, we summarize in this paper our recent effort in formulating an
elastic-plastic-fracture model for concrete structural analysis. The present consideration s
limited to plain concrete behaviors subjected to tri-axial short-time loading conditions.

The model assumes a linear or nonlinear elastic stress-strain relationship until the combined
state of stress reaches an initial yielding surface. The initial yielding criterion is assumed to
have the same geometrical shape in the stress space as the failure criterion. A four-parameter
failure criterion is also proposed to define the ultimate state of stress. Between the initial
yielding state and the failure state, an incremental stress and strain relationship is assumed to
define the plastic behaviors. The plastic relations are based on a mixed-hardening model and the
classical associated flow rule. Fundamental concepts and the verification of the four-parameter
failure criterion with experimental data are discussed. For the post-failure models, the concrete
behaviors are defined by three different types of failure modes, namely, cracking, crushing, and
a mixed mode. A crushing coefficient based on a dual criterion is proposed to identify each of
the failure modes. Procedures have also been developed to handle the stress-redistribution for
the fractured concrete. The procedures are tailored for the finite-element analysis of conerete
structures. For the fractured concrete stress-strain relationship, an anisotropic elastic model 1s
proposed.

Different stages of the proposed elastic-plastic-fracture model mentioned above can be
illustrated schematically in a typical uniaxial stress-strain curve for plain concrete shown in
Fig. 1.

A FOUR-PARAMETER FAILURE CRITERION

A four-parameter failure criterion is proposed to define the ultimate state of concrete
behavior. The same form of formulation and the same proportionalities among the material
parameters are also adopted to describe the initial yielding. This can be geometrically inter-

e o e o e e  m —  am e = v

Stress Release

n
: Intiai Yieldin bg“ 1
o |Pomnt 4
3 form—- 5
"
L
a Post Fatlure
€
=3
o
o] —_— €

Compression (-)

Fig 1 Andeahzed typical umaxial stress-stramn curve for plan concrete
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preted as the initial yielding surface in the stress space has the same shape as the fracture
surface. Only the limiting values are proportionally smaller. Concrete behaviors are assumed to
be elastic for stresses within the initial yielding surface. For stresses falling between these two
surfaces, concrete behaves plastically. Beyond the failure surface, an anisotropic elastic
post-fracture behavior is assumed.

Characteristics of a failure surface
It is generally acceptable that the macroscopic fracture behavior can be assumed to be
isotropic. This implies that a failure function can be written in terms of the principal stresses
{01, 72, 03) or in the Haigh-Westergarrd coordinate system[10] (the stress invariant space)
fo,r,8)=0 )]

where
P =§Ilv r= \/(212)’

- -lﬁél.

8=cos™ 5 W,IGISGO",

S; = the maximum principal deviatoric stress
=01"“31'Ilifo’|>02>0'3,

I, = the first stress invariant
=g+ o,to;,
J, = the second deviatoric stress invariant

= .é. (o) — @) +(0y - 03 + (03— 0y)’).

A geometrical interpretation of the coordinate system is shown in Fig. 2. The explicit form of
the failure function is defined by the experimental data. Uniaxial and biaxial tests of plain
concrete are well-documented in the literature. To name a few, reports by Kupfer and
Hilsdorf[11] and Tasuji et al.[12] nearly cover the full area of the biaxial stress section.

~T2
[
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Fig. 2 General failure surface in principal stress space,
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However, for the triaxial state, only the test data for limited ranges are available, and generally
have wider scattering among different testing apparatus. Among them, we mention the results
by Mills and Zimmerman([13] Launay and Gachon{14] and Gerstle ef al.[15]. The aforemen-
tioned experimental data also forms the basis of the failure function propesed herein.

The available data clearly indicates that the failure surface plotted in the principal stress
space, Fig. 2, should form a cone shape with smooth curved meridians and non-circular convex
sections in the deviatoric stress plane. Since the hydrostatic pressure alone will not cause
failure, the failure cone should have an open end in the negative hydrostatic axis. In addition,
the intermediate principal stress should be accounted for. This indicates that the deviatoric
cross-section of the failure cone approaches to a circular shape as the hydrostatic pressure
increases. It proportionally shrinks into a triangular shape as the hydrostatic pressure
decreases.

A four-parameter criterion

The present criterion 1s motivated by the geometrical requirements of the failure surface
cross-section in the deviatoric plane mentioned above. Observe in Fig. 3 that for a constant
value k, r cos 6 = k represents an equilateral triangle and r=k is a circle on the deviatoric
plane with |8| <60°. Hence, given two positive constants « and 8 with a + 8 = 1, a combined
equation r(a cos 8 + B) = k yields a smooth function between |8] < 60° on the deviatoric plane
and bounded by the two extremes of equilateral triangular and circular shapes (a =0 or 8 = 0).
Recall the convex meridians shown in the experimental data. This indicates that for a constant
value of 6, r should be a nonlinear function of p. Hence, p and r* terms are added and the
resulting form is

fp,r,0)=ar*+(acos 8+ B)r+Cp—1=0. )

Equation (2) may be written in terms of the stress invariants defined in eqn (1):

A&%W%w%w%—ho, 3)

where the parameters are nondimensionalized by using the umaxial compressive strength of
concrete f.. In eqn (3), o, is the maximum principal stress with a positive stress value
representing a tensile stress. I, is the first stress invariant, and J; the second deviatoric stress
invariant. It is interesting to note that although the basic form is originated by the geometrical
consideration in the stress space, the resulting functional form appears to be a linear com-
bination of three well-known failure criteria, namely, the von Mises, the Drucker-Prager, and
the Rankine's criteria.

In some aspects, eqns (2) and (3) resemble the forms proposed recently by Ottosen[16],
Hansson and Schimmelpfennig{17], Willam and Warnke (8], and Nagamatsu and Sato[18].

rcos 8 = K
r(acosg+b) =K
-- ~r=K

Fig 3 Geometry on the deviatoric plane
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This is not surprising, since all the above forms are also based on the similar set of geometrical
considerations. However, the present form appears to be simpler for the determination of
material parameters and possesses some convenience in numerical caiculation. Equations (2) and
(3) also bear certain similarities to the forms suggested by Argyris ef al.[19], Mills and
Zimmerman[13] and Hannant and Frederick[20). However, the present form has the advantage
of satisfying the convexity requirements for all type of stresses. Verifications of the present
failure criterion by plotting the function in the octahedral shear and normal stress plane, the
biaxial stress plane, and the deviatoric stress plane have shown good agreement with the
reported test data. For comparison, the material copstants A, B, C, D in eqn (3) were evaluated
based on four basic stress conditions: the simple tension (¢, = f}, o; = 03 =0), the simple
compression (o, 0,=0, o3=—f.), the biaxial compression (o, =0, a; = 03=—f}.), and the
confined triaxial compression (o, = o, = - f,, 03 =~ f.. with f.. > f,.). The stress values were
assumed to be fi=0.1f,, fi.=115f,, f,.=08f, and f. =4.2f.. This gives A=2.0108,
B=09714, C =9.1412, and D =0.2312. Figures 4-6 show the comparisons of the prediction
and various reported data. We have also applied the failure criterion to study an elastic-fracture
analysis of a concrete splitting test for the purpose of illustrating its tractability in numerical
calculations[21].

Criterion for initial yielding

It is convenient to assume a criterion for initial yielding to have the same functional form as
the failure criterion. In the present model, the material constants are also proposed to remain
the same, except that the nondimensional constant, the compressive strength f;, is replaced by
a different value f.=0.3~0.6f. The exact value of f. can be taken from the uniaxial
compressive stress—strain curve of the specific concrete used.

ELASTIC AND PLASTIC REGIONS

The initial yielding criterion and the failure criterion define the limits of the elastic region
and the plastic region. Within the elastic region, concrete can be assumed to be an homo-
geneous, isotropic, linear elastic material from the macroscopic point of view. The constitutive
relation is defined by a stress-strain relationship with two elastic constants, the modulus of
elasticity E and Poisson’s ratio », or alternatively, the bulk modulus K and shear modulus G.
For finite-element applications, the matrix form of constitutive relations can be found in a
standard textbook, e.g. Ref. [22]. For a state of stress beyond the initial yielding, irreversible
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Fig. 6. Failure criterion 1 biaxial principal stress plane.

deformations become significant. It is converient to follow the classical plasticity theory[10] to
use an incremental form of stress-strain relationship. The total strain increment is taken to be
the sum of the elastic increment and the plastic increment

de, = dej; + def. )
Adopting the flow rule with a plastic potential function F and
det = ar &£ ©)

do,’
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we may assume that the plastic potential coincides with the subsequent loading function which
has a similar form as the initial yielding function or the failure function. In eqn (5), the
associated flow rule, o, is the total stress tensor and dA a positive parameter to be determined.
To include concrete behaviors under the local unloading and the cyclic loading conditions, the
kinematics of the loading surface is assumed to follow a mixed hardening model{23, 24]. The
model allows the loading surface to translate and simultaneously to have isotropic expansion.
The specific form of F is taken to be (Fig. 7)

F(o,,7)= A;({ly B\/J,+ Cé,+ DI, + 7(¢,) =0, 6)
(4

where the tensor a, characterizes the translation of the center of the loading surface, r(¢,') an
isotropic hardening function, ¢,' the equivalent plastic strain due to isotropic hardening. A, B, C
and D are material constants given in the failure criterion. The stress invariants are I, =g,
J,=1/28;S, where 6; = o, — ay, S; =S, —a, +1/36,au. S, is the deviatoric stress tensor and
&, the maximum principal value of the stress tensor G

Using the condition of consistency, i.e. dF =0, and noting that

a5, do,’
we have
aF dF
-5—':] (do‘,, - day) + ‘3; dr=0. (7)

Equation (7) may be used to evaluate the fiow rule parameter dA. To do so, we consider the
plastic strain increment. It is convenient to write

def = def +def

=M dej) +(1 - M) def, 8)
I\
ff
fi;/// fo 1 —
______ o
———————————— FLEPS 1

Initial Yielding Surface

- Subsequent Loading

1
!
Failure Surface

Fig. 7. Schematic of failure, mitial yielding and subsequent loading surface.
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and introduce a constant parameter M to define the isotropic hardening effect. The remaining
plastic strain increment deZ* is then due to the kinematic hardening. The strain increment de?' is
related to the increment dr of the isotropic hardening function. Define the equivalent plastic
strain increment to be

de, = (de? def)'?, )

where the definition can be applied also to the components de?' and de?* which are denoted by
de,’ and de,", respectively. In view of the definition of the isotropic hardening function 7(e,’),
we have

dr = H de,' = MH de,, (10)

where H is the slope of the 7— ¢, curve.
To determine the tensor increment da,, Ziegler’s kinematic hardening rule is assumed [25],

da, = dud, (1

The parameter du is further assumed to be a function of the kinematic strain increment in the
form

du =cde," = c¢(1- M) de,. (12)

Using the flow rule, eqn (5), to replace de, by the corresponding stress components, dr ard de,
can be solved explicitly in terms of the unknown parameter dA. Substituting the resulting forms
into eqn (7) and noting that the elastic strain increment is governed by a linear elastic behavior,

da,, = Ci]ld dEi( (13)
=Cyu déu d:\C,,H :F (13)

where Cyy is the isotropic stiffness tensor whose components can be expressed in terms of
elastic moduli. The parameter dA can be solved explicitly in term of the stress components. If
dA is again substituted back into eqn (13), a total stress-strain incremental relationship for the
plastic region is obtained:

oo
Comars Cmnrs + [C(l - M) 7 0',, AM ""‘] \/ Gmnmn

Cou = 14

doy = dey,

where

G oJF 9F _ oF iF

T 3O OOy OOmn 00

Note that eqn (14) is based on the mixed hardening model. A weighting coefficient M is
included to allow the freedom of selecting different proportions of isotropic and kinematic
effects in the mixed model. M can also be a negative value, so that isotropic softening can be
considered. The advantages of using the concept of mixed hardening have been demonstrated
by Axelsson and Samuelsson[23] in describing the loading cycles of metals. They showed
different degrees of Bauschinger effect can be considered. The mixed hardening gives much
better curve-ﬁttmg results than either the isotropic or kinematic hardening model. In their
consideration, M is arbitrarily set at 0.15 or 0.20. _

Equation (14) also contains two material constants H and c. They can be related to the test
results of a sample subjected to simple compressive loading. For the uniaxial compressive
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stress condition, the only non-vanishing stress component is o3; =~ 4, and according to
Ziegler's hardening rule, the only corresponding non-vanishing component of a, is a3 =—a.
Hence, from the stress-plastic strain plot, we may evaluate the tangent modulus H, i.e

dd = H de,. (15)
The degenerated form of the loading function given in eqn (6) becomes

f-a=r (16)
Using eqns (10)~(12) and eqn (16), we find
dé = MH de, + c(1- M)7 de,
Or,
H=MH+c(1-M)r.

Since M is arbitrary, this implies

H=Handc=

S

: {1n

Finite-element implementation

To implement the incremental stress—strain relationship for finite-element analysis, it is con-
venient to write eqn (14) in an explicit matrix form. After carrying out the algebraic manipula-
tion in substituting the loading function into eqn (14), we have

{do}=[C7}{de}, (18)
where
{do} = (do,, doy, do,, A7, d7y, dT,)T
{de} = (de., de,, de,. dy,s Ay d )T
Fori=1,2,3,
__Ed-» E( B . &Y
C:P—(]+V)(l—2v) W(l —2v+1+ v) :
Fori=4,5,6,

E E2 _4’ 2
C'?“z(lw)"ﬁ?(x +'y)‘

Fori j=1,2,3and i#}

= Ev _E( B & B &
C*"P-(H-v)(i—Zv) W(I—i’!v+l+v)(1—’2v+l+v)'

Fori=1,2,3and j=4,5,6

.._,Ef 3! ét ¢i
Cr= W(1—2v+l+v)l+v'




190 S S HsieH et al.
Fori,j=4,5 6and i# ],

EZ

C:IP::-W_(I,;_ v)z

- T
3 =E€Zz Sx +BB[(SySz ”T§z+§j2]y

¢4 = “\%: T-yz + 23[7.“;:)! - gx;yz}-
2

¢, and ¢; can be obtained by permutations of ¢, for y and z. Similarly, ¢ and ¢ are obtained
by permutations of ..

W=HM (ng,,_ 1) \/(233-1»%3‘)4-5(-3-5—‘14——@‘—)

1-2v 1+
+ (1= M)a(B1+ d) + G, (B + d) + .81 + 3)

+ it Fudst Tl (280384,

1
Bl=§C+Da
YV SR V: S AT}
B, 2\/]27+B+\/3 C(coso 5 fz”zsinﬁia)'
_Csing
Bs J,sin 34’

Bs= @1+ d + ¢ + AL+ ¢ + 6D,

and

=1 -I[M_-_i_
8 3cos > fzm}

It should be noted that since the loading function becomes singular at &, = &, > &;, or 8 = 60°,
for this specific state of stress the limiting values of 8, and B, should be implemented in the
numerical calculations where

= A
32‘2\/12';"‘34"\%, B:=0.

A note of further interest is that since the failure criterion (and the loading function) is a
generalization of several other theories of simpler form, it is particularly convenient from the
program development point of view. For example, by suppressing material constants A and D
and substituting appropriate material values for B and C, the computer program can be adopted
for the Drucker-Prager’s plasticity model{26]. By the choice of parameter M =0, 1, or other
values, we may select the hardening model to be kinematic, i1sotropic, or of the mixed type.
Thus, the program developed based on the present model in fact embraces some simpler
modeling techniques.

FAILURE MODE CRITERION
Concrete fails or fractures in extremely complex modes. Aggregate types, mixed design, and
loading conditions among many other parameters all play important roles in the cause of failure
It would be difficult to classify and define precisely the failure modes. However, in a general
sense, the mode of failure may be categorized into three types, namely, the cracking, crushing
and a mixture of cracking and crushing. Documented test results for tenmsion-temsion or
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tension-compression biaxial conditions show the cause of fracture is primarily a brittle splitting
in the plane normal to the maximum tensile strain direction (e.g. (12, 13, 27]). For the triaxial
compression tests, depending on the magnitude of confinement pressure, it seems that all the
three types of mode are possible. When the confinement pressure is much lower than the axial
compression, rough crack surfaces can be formed in the direction normal to the maximum
tensile strain, possibly due to the connection of numerous microcracks. For nearly uniform
hydrostatic condition, crushing failure is more common, possibly due to the rupture of mortar
in the concrete.

Crushing coeflicient

In view of the failure modes due to various types of loading conditions, a crushing
coeflicient a is proposed to identify the mode being either a pure cracking, a pure crushing, or a
mixture of the above. The coefficient can also be used to estimate the proportions of cracking
effect or the crushing effect in a mixed type failure. This is particularly convenient when the
post-failure behaviors of the fractured concrete are considered.

The concept of crushing coefficient is based on the consideration of a dual criterion in
defining the pure cracking zone and the pure crushing zone in the overall spectrum of failure
mode. Specifically, the pure cracking zone is assumed to satisfy the maximum tensile stress
condition

0'1>0-

Written in terms of the stress invariants, we have
1
J; cos 8+§-\7-3-I,>0, 16| < 60° (19)

It may be shown that the upper limit of the pure cracking condition satisfies the uniaxial and the
biaxial compression failure test data, see Fig. 8. For the pure crushing zone, it seems reasonable
to assume that all three principal strain components are all compressive strains, so that the
crack mechanism can not be developed in the light that no tensile strain could appear in any
direction. This implies that the maximum principal strain is non-positive

<0,

Purety Crushing Zone (ac 2)

Purely Cracking Zone

(ast)

o} -1 -2 -3 -4 -5

Fig 8 Fatlure zones in octahedral shear and normal stress plane
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Using the Hooke's law, the same condition becomes

g = voy+ o) <0 with o,>0,> 0,
Rewrite the inequality in terms of the stress invariants, it becomes

(1-2»)

\/]2 cos @ +m

I,<0, 6] =60°. 0)

Combining eqns (19) and (20) a crushing coefficient a is defined as

I
[N, 2 S o
VIV A Y 16) = 60°. @)
The failure modes are then identified as
(i) Pure cracking, a <1,
. . {1+v)
(i) Pure crushing, a > =%y (22
(1+v)

(iif) Mixed mode, I =a =< =2y

If Poisson’s ratio is taken to be » = 0.2, we have a = 1.0 and 2.0 as the boundary values separating
the three different failure zones.

Note that in obtaining the simple crushing coefficient « Hooke's law of elasticity was
employed to obtain the stress criterion. Strictly speaking, this is inconsistent in an elastic-
plastic-fracture model; Hooke’s law may not apply immediately before crushing. However,
judging by the complex nature of concrete failure and the simplicity in the application of the
crushing coeflicient, the elasticity assumption may represent an acceptable approximation. For
more acturate descriptions, the original dual criterion, i.e. ¢, >0 and ¢, <0, may also be used.

POST-FAILURE BEHAVIOR OF FRACTURED CONCRETE

To complete the constitutive model, we also need to define the post-failure behaviors for
each of the failure modes identified by the crushing coefficient. For the pure crushing zone, the
crushed concrete can be viewed to behave like a grannular material under the confinement of
neighboring materials. Material stiffness in compression or shear, although reduced, should still
exist. However, for simplicity, we may neglect the residual stiffness and the residual strength of
a crushed concrete element in the analysis. Thus, the post-failure behavior becomes perfectly
deformable. For a concrete element subjected to pure cracking, the post-failure behavior is
assumed to be anisotropic elastic that the element have lost its rigidity in the cracked planes,
see Fig. 9. An extensive discussion of the kinematics of a cracked concrete element was
reported by Chen and Suzuki[28]. Within the mixed failure zone, the value of the crushing
coefficient is between 1.0 and 2.0 for » = 0.2, for example. If the crushing coeflicient is adopted
as a measure of the degree of crushing in this partially cracking and partially crushing concrete
element, then we may view that the post-failure behavior is also a linear interpolation of the
perfectly deformable behavior and the anisotropic elastic behavior. Hence, it is proposed that
the concrete element will lose its rigidity in the cracked plane according to the maximum tensile
strain direction and the anisotropic stiffness of the fractured element will also be proportionally
reduced according to the magnitude of a. Note that for » = 0.2, mixed failure lies between
a = 1.0 and « = 2.0. Thus, the values of a behind the decimal point represents the percentages
of crushing and also the percentages of stiffness reduction.

Finite-element implementation
To formulate the anisotropic elastic behaviors in matrix form for finite-element application,
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¥(2)

y 1%y v
A
x x(r)

{a) Stress Distribution Just Before (b} Stress Distribution Just After
Crocks Are Formed Cracks Are Formed

Fig 9 Pattern of cracks and stress distrbution 1n a cracked concrete

we define the pre-failure principal axes be (x', y', 2') with x' denoting the maximum tensile
strain direction. Then, the incremental stress-strain relation for the post-failure behavior has
the form

{AO’} = [Tc]T[é][ Tt]{de} - {ock} - {”ch}s (23)
in which

{Ac}={Ac,, Ac,, Ad,, A1y, Ay, AT},

{Ae} = {AE,, Afy: AG,. A‘Yyﬂ A'va A'ny}ry

{o'ck} = [TG]T{O.;” 0,0,0, 71'::’ T;’}T’

{oa} =B - DITIT{0, 0}, 0% 75, 0,0}
{o} is the released stress components due to cracking and {e,} is that due to crushing. [7,]
and [T,] are the transformation matrices for stress and strain components between the principal
coordinates and the original reference frame. B is a reduction factor related to the crushing

coefficient a. For a<1,8=1;a>2,8=2;and | s a <2, B =a. [C]is a stifiness matrix with
components

Con= Ciy =2~ BE( - v)l(1+ v)1-2v),
Cp = Cin =2~ BYEW(1 + v)(1-2v),
Cu=Q~-BER(+v),

and all other components vanishes.
It 1s expedient to list the matrix equations for some special cases:

(a) The axisymmetrical problem. Written in polar coordinates, we have

Ao, ! e o,
Ao,| (2=B)E [{bHbW) | vib()}||Ae, | (11—~ BHBWHE'WNT | 0 |lo:
Ar,| = 1-» ! Ayl ; Tr 24
Ac, bt | 1 J|de& 0 ig-1/ |0

(b) The plane strain problem.

Ae,

Ao, o,
{2,:) = CBE (s { f’ij) (1]~ Q- BB )T {:i} 25
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The abbreviated functions are

cos’ ¢ cos® ¥
{b(y)} = { sin’ ¢ and {b'()} ={ sm® ¢ b
sin ¢ cos ¢ 2 sin ¢ cos lfl}

where ¢ is the direction of the cracked plane, see Fig. 9, [I] is the identity matnx.

(c) The plane stress problem. Special attention should be given to the plane stress condition.
For tension-tension and tension-compression conditions, the maximum tensile stress is in the
plane, and the concrete always fails in the cracking mode. However, for the compression-
compression case, normal stress o, =0 represents the maximum stress. This indicates that the
crushing parameter a = 1.0 for all stresses. Hence, for plane stress condition the mixed zone
and crushing zone are collapsed into a singular point. Physically, it can be interpreted that
based on the zero-thickness assumption of plane stress, the element thickness simply does not
permit cracks to generate, and pure crushing would result due to the simultaneous com-
pressions in the plane. The corresponding matrix formulations are: for tension-tension and
tension-compression cases,

Aa'x Aex Oy
( Aoy + =[E{b()Hb¥)}"] { Ag |+~ ({11~ {b(WHD'WR) { ay }
Txy A‘ny Txy ’

and for compression-compression case,

AO’} AE,; Oy
Ao, =[] Ae¢, ¢ {0

A7, Ay,y

Txy

APPLICATION FOR OTHER MATERIALS

The present model is proposed for concrete materials. However, the model can also be
extended to represent properties of other engineering materials of similar nature. As mentioned
previously, by inserting appropriate material constants (see Table 1) the model can be
degenerated to simpler forms, such as the von Mises criterion which has been used for metals.
It can alsq be reduced to' the Drucker-Prager criterion which has been used as a simplified
version for the Mohr~Coulomb model for rocks and soils. The proposed four-parameter failure
criterion and the associated counstitutive equations are thus the generalization of some models
used for a wide variety of materials. Due to the flexibility of having four material constants,
material properties can be simulated more accurately. For example, the Drucker-Prager yield

Table 1 Material constants matched with other critenia

Pour-Paraneter Model A B c D
von Mises 0 _!l_z 0 o
(3,=8

~Prager 1 g
Drucker B o < ° 2

(114-/3;'!0

Coulomb acsmd) |

2¢c cos ¢

3 (o

(t +otanp —c=0)
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function, depicted in the three dimensional principal stress space, can be represented by a cone
shape with the circular base located on the deviatoric stress plane, while the Coulomb criterion
is a pyramid shape with an irregular hexagonal base. Thus discrepancies are expected when the
Drucker-Prager model is used to simulate the behaviors of a typical Coulomb-type material
such as soils. Efforts have been made to minimize the discrepancies by relating the Drucker-
Prager constants « and K to the Coulomb coefficients ¢ and ¢ by using various matching
approaches. However, successful matchings are limited to certain special cases. Using the
four-parameter model proposed in the study the material constants A, B, C, D can be used to
match Coulomb'’s material properties ¢ and ¢ as shown in Table 1. With two additional
constants they seem to match very well on the deviatoric plane. The difference is less than 4%
(see Fig. 10). Plotted both criteria on the biaxial stress plane, without further adjustment in the
material constants, the maximum difference is found to be less than 15% in the compression-
compression region and 4% in the tension-compression and the tension-tension regions as
shown in Fig. 11.

SUMMARY AND CONCLUSIONS

A plastic-fracture constitutive model for concrete structural analysis has been developed,
with the primary objective being that the material model has the capability of describing the
essential features of concrete behaviors, and is yet sufficiently simple for which the model can
easily be implemented for finite-element analysis. Based on the geometrical considerations in
the stress space, a four-parameter failure (vielding) criterion is proposed. Parameter deter-
mination for the criterion has shown to be simple. In addition, the criterion proves to be a linear
combination of three simple models, namely, von Mises, Drucker-Prager and Rankine models.
Hence, a plastic-fracture theory based on the present failure (vielding) criterion in fact
embraces some simpler theories. This is particularly tractable in the program development and
in the selection of modeling techniques often required in the material characterization. Resting
on the similar consideration, a plastic model displaying mixed hardening effect has been
proposed. With the selection of a constant parameter, the hardening rule has the choice among
the isotropic type, the kinematic type, and the mixed type.

To identify the failure mode, a simple crushing coefficient based on a dual criterion is
proposed to subdivide the spectrum of failure into the crushing type, the cracking and a mixture
of cracking and crushing. For each type of the failure modes, the post-failure anisotropic elastic
behavior has been defined. The crushing coefficient is also used to estimate the amount of
crushing in the mixed mode of failure, and to determine the loss of material rigidity after
fracture.
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Fig 10 Mohr-Coulomb model, Drucker-Prager model and the four-parameter model m deviatonic stress
plane.
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Fig. it Companson of Mohr-Coulomb model and the four-parameter model in baxial stress plane,

Since one of the considerations in the development is that the material model developed

should be convenient for numerical calculations, matrix equations for the constitutive relation-
ships at all stages of the loading and unloading process discussed in the above have been
explicitly formulated. This includes the consideration of adopting a stress-redistribution process
commonly used in finite-element analysis to handle the progressive failures.

In conclusion, we wish to emphasize the generality and versatility of the present plastic-

fracture model, the simplicity in using the crushing coefficient to handle various types of failure
mode, and the tractability in implementing the model for concrete structural analysis.
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